The Crystal Structure of $\mathrm{Ta}_{6} \mathrm{~S}^{*}$

By H. F. Franzen and J. G. Smeggil
Institute for Atomic Research and Department of Chemistry, Iowa State University, Ames, Iowa 50010, U.S.A.

(Received 14 February 1969)

Abstract

The crystal structure of $\mathrm{Ta}_{6} \mathrm{~S}$ has been determined from single-crystal X-ray diffraction data. The compound crystallizes in the monoclinic space group $C 2 / c$ with unit-cell dimensions $a=14 \cdot 16, b=5 \cdot 284$, $c=14.79 \AA$ and $\beta=118.01^{\circ}$. The unit cell contains eight formula units. Refinement of the structure with three-dimensional data was performed by a least-squares treatment of the positional parameters and the isotropic temperature factor coefficients. The metal grouping in the $\mathrm{Ta}_{6} \mathrm{~S}$ structure is unlike that in other known metal-rich chalconide structures with the exception of $\mathrm{Ta}_{2} \mathrm{~S}$, to which it is closely related. The structure can be viewed as chains of body-centered pentagonal antiprisms of Ta atoms sharing faces in one direction and interconnected via sulfur atoms in the other two directions. The sulfur atoms are coordinated by seven tantalum atoms, six of which are arranged in distorted trigonal prisms. The seventh coordinated tantalum atom occurs off a rectangular face of the trigonal prism, a very common coordination configuration for sulfur and phosphorus in metal-rich compounds.

Introduction

During the preparation by high temperature techniques of the ditantalum sulfide phase, reported by Franzen \& Smeggil (1969), the existence of a tantalum-sulfide phase more metal-rich than $\mathrm{Ta}_{2} \mathrm{~S}$ was demonstrated by Debye-Scherrer and Guinier powder patterns of various samples. The work reported here was conducted with the purpose of determining the structure of this lower sulfide of tantalum.

Experimental

The $\mathrm{Ta}_{6} \mathrm{~S}$ samples were prepared in a manner analogous to that previously described (Owens, Conard \& Franzen, 1967), modified by the use of a closed crucible. Attempts to synthesize $\mathrm{Ta}_{6} \mathrm{~S}$ in a crucible with a small orifice in the lid led only to products containing proportionally large amounts of metallic tantalum. The sulfur, obtained from American Smelting \& Refining Co., was 99.999% pure. The tantalum, obtained from the National Research Corporation, was 99.99% pure. The final annealing temperature for the $\mathrm{Ta}_{6} \mathrm{~S}$ preparation was $1620^{\circ} \mathrm{C}$. Due to a very high incidence of twinning in this phase, a single crystal suitable for determination of the structure was obtained only after numerous attempts. Weissenberg and rotation photographs were initially obtained to determine the space group and a preliminary set of lattice parameters. Single-crystal integrated peak intensities were collected with a Hilger-Watts diffractometer coupled with an SDS (910)-IBM (1401) computer configuration described elsewhere (Dahm, Benson, Nimrod, Fitzwater \& Jacobson, 1967). Mo K α radiation was used with a Zr filter to collect data for all reflections in the range $0<2 \theta \leq 60^{\circ}$ in octants $H K L, \bar{H} K L, \bar{H} K \bar{L}$, and $H K \bar{L}$. Lorentz and polarization corrections were applied to the intensity data. Absorption corrections, based on

[^0]the crystal's approximately rectangular prismatic shape (about $40 \times 30 \times 10 \mu$), were made using a program by Busing \& Levy (1957) adapted to an IBM 360/65 computer. A linear absorption coefficient of $1413 \mathrm{~cm}^{-1}$ for Mo $K \alpha$ radiation was used to obtain the absorption corrections. The values for the transmission factor coefficients ranged from 0.0830 to 0.2352 . The lattice parameters were determined at $25^{\circ} \mathrm{C}$ from a Guinier powder photograph using KCl, $a=6 \cdot 29300 \pm$ $0.00009 \AA$ (Hambling, 1953) as an internal standard, and $\mathrm{Cu} K \alpha$ radiation, $\lambda=1 \cdot 5405 \AA$: $a=14 \cdot 1576 \pm$ $0.0040, b=5.2835 \pm 0.0013, c=14.7885 \pm 0.0049 \AA$ and $\beta=118.010 \pm 0.024^{\circ}$ with $Z=8$ (see below), $D_{x}=$ $15 \cdot 18 \mathrm{~g} . \mathrm{cm}^{-3}, D_{m}=15 \cdot 21 \pm 0 \cdot 15 \mathrm{~g} . \mathrm{cm}^{-3}$.

Structure determination

The indices of observed reflections were found to obey the following conditions: $h k l, h+k=2 n ; h 0 l,(h=2 n)$, $l=2 n$. These reflection conditions indicate that the centrosymmetric space group is $C 2 / c$. All seven atoms were found to be in general eightfold positions in the final refined structure.

The $H K L$ and $\bar{H} K L F_{\text {obs }}$ and σF values were averaged for common H, K and L indices in symmetrically equivalent octants. The intensity of the reflection, I, was taken as $A-B$ in which A and B are the integrated peak count and the background count for a given reflection; and the standard deviation, σI, of a reflection was then taken as $\sqrt{A+B}$. 'Observed' data were arbitrarily taken to be those for which $\sigma I / I=\sqrt{A+B} \mid$ $(A-B) \leq 0.40$ and for which $I>0$. The remainder of the reflections were considered 'unobserved'. According to this criterion, there were 668 'observed' reflections, or about 23 data per variable in the final refinement. Unitary structure factors were obtained from the observed structure factors by a graphical method (Woolfson, 1961). The 105 unitary structure factors (comprising approximately 16% of the observed reflections) with magnitudes greater than or equal to 0.40 were examined. The triple-product sign relation
was used to obtain the signs of these structure factors in terms of one variable sign. Two Fourier electron density functions were calculated using the 105 signed $F_{\text {obs }}$ values, one with the variable sign positive, the other with the variable sign negative. Both maps contained six strong peaks per asymmetric unit. There was an unreasonably short $\mathrm{Ta}-\mathrm{Ta}$ distance $(2 \cdot 13 \AA)$ in the asymmetric unit cell obtained with the variable sign positive. Accordingly, the atomic positions implied in the map with the variable sign negative were used as atomic positions in a trial structure. The electron density map calculated on the basis of this trial structure clearly showed one possible sulfur position in the asymmetric unit. The structure obtained using the tantalum and sulfur positions was refined by leastsquares computation (Busing, Martin \& Levy, 1962) using atomic scattering factors by Hansen, Herman, Lea \& Skillman (1964). The scattering factors were corrected for anomalous dispersion using both the real and imaginary corrections for both Ta and S given in International Tables for X-ray Crystallography (1962).

Results

The structure was refined with isotropic temperature factor coefficients until the final unweighted reliability

Fig.1. Projection of the $\mathrm{Ta}_{6} \mathrm{~S}$ structure on to the $x z$ plane.
index, defined by $R=\Sigma| | F_{o}|-k| F_{c}| | / \Sigma\left|F_{o}\right|$, where k is the scale factor, was 6.6%. The function minimized by the least-squares refinement was $\Sigma \omega \Delta^{2}$ where ω is the weight and Δ is $\left|F_{o}-k F_{c}\right|$ for a given reflection, respectively. The weights were taken to be $(\sigma F)^{-2}$ where $\quad \sigma F=\left[(\delta F / \delta I)^{2}(\sigma I)^{2}+(\delta F / \delta A)^{2}(\sigma A)^{2}+(\delta F / \delta \mathrm{Lp})^{2}\right.$ $\left.\times(\sigma \mathrm{L} \mathrm{p})^{2}\right]^{1 / 2}$ in which σI, the standard deviation in the intensity, is given by $\sqrt{A+B}$ as described earlier; σA, the estimated error in the reciprocal of the transmission factor correction, is equal to 0.05 times the reciprocal of the transmission factor correction; and $\sigma(\mathrm{Lp})$, the estimated error in the combined Lorentz and polarization factor corrections, is given by $\sigma(\mathrm{Lp})=$ $[\delta(\mathrm{Lp}) / \delta(2 \theta)] \sigma(2 \theta)$ where $\sigma(2 \theta)=0.02^{\circ}$. The structure factor, F, the intensity, I, the transmission factor coefficient, A^{*}, and the combined Lorentz-polarization factor corrections, Lp , are related by the familiar expression $I=k A^{*} \mathrm{Lp}|F|^{2}$, with k a scale factor. Using weights calculated according to this scheme, the goodness of fit defined by $\left.\left\{\Sigma_{i} w \Delta_{i}^{2}\right) /\left(N_{O}-N_{V}\right)\right\}^{1 / 2}$ is 1.29 where N_{O} is the number of reflections and N_{V} the number of variables.

Table 1 lists the refined values and corresponding estimated standard deviations obtained for the positional parameters and temperature factor coefficients. Table 2 lists the observed and calculated structure factors for all observed reflections and approximately 14% of the unobserved reflections. The unweighted reliability index for this set of data is 6.8%. All signs of the structure factors assigned by the direct method agreed with those obtained for the refined structure.

Täble 1. Refined positional and thermal parameters for $\mathrm{Ta}_{6} \mathrm{~S}$ using the 668 'observed' reflections
All atoms occupy eightfold general positions (f) $x y z$ of the space group $C 2 / c$.

$10^{4} x / a$	$10^{4} y / b$	$10^{4} z / c$	B	
$\mathrm{Ta}(1)$	2480 ± 3	4067 ± 7	2518 ± 3	$0 \cdot 04 \pm 5 \AA^{2}$
$\mathrm{Ta}(2)$	3401 ± 2	6568 ± 9	4547 ± 3	$0 \cdot 26 \pm 5$
$\mathrm{Ta}(3)$	4364 ± 2	1628 ± 8	4051 ± 2	$0 \cdot 13 \pm 5$
$\mathrm{Ta}(4)$	358 ± 2	1460 ± 8	1740 ± 3	$0 \cdot 12 \pm 5$
$\mathrm{Ta}(5)$	2111 ± 2	1475 ± 8	3969 ± 3	$0 \cdot 06 \pm 5$
$\mathrm{Ta}(6)$	1063 ± 2	6798 ± 7	3173 ± 3	$0 \cdot 06 \pm 5$
$\mathrm{~S}(1)$	3920 ± 15	9189 ± 41	437 ± 16	$0 \cdot 51 \pm 30$

A difference-Fourier synthesis was performed using all observed reflections. The synthesis indicated a peak attributable to approximately 1.3 electrons at $x=0.410$, $y=0 \cdot 826, z=0 \cdot 200$. An examination of the $F_{\text {obs }}$ Fourier synthesis at this position indicates no positive peak. All other peaks correspond to approximately 1 electron or less. These small peaks found in the dif-ference-Fourier synthesis do not necessarily lie on positions of positive electron concentration in the $F_{\text {obs }}$ Fourier. It was therefore concluded that the small peaks in the difference-Fourier were due to errors in the data.

The Thermal Ellipsoid Plot computer program written by Johnson (1965) was used to draw a projec-
tion down the b axis. This view is illustrated in Fig. 1. The interatomic distances given in Table 3 were also calculated using this program. The Oak Ridge Fortran Function and Error program by Busing, Martin \& Levy (1964) was used to determine the errors in the interatomic distances.

Discussion

The tantalum atoms are grouped in columns that run parallel to the \mathbf{b} direction. The columns are composed of slightly distorted body-centered pentagonal antiprisms that share basal planes. The average $\mathrm{Ta}-\mathrm{Ta}$ distance from the central atom to the ten atoms in the pentagonal antiprism is $2.93 \AA$, and the distance to the
two other central atoms above and below is $2.64 \AA$ (an unusually short $\mathrm{Ta}-\mathrm{Ta}$ distance). Thus each central tantalum atom is surrounded by 12 other tantalum atoms in a distorted icosahedron, so that the columns can also be analyzed into interpenetrating icosahedra in which the center of the one is the apex of those above and below. The chains of Ta antiprisms (or iscosahedra) are bridged in the a and \mathbf{c} directions by sulfur atoms. The sulfur atoms are bonded to seven Ta atoms from three chains of antiprisms. Two chains each supply two Ta atoms to the arrangement, and the third chain supplies three Ta atoms. The average $\mathrm{Ta}-\mathrm{S}$ distance in $\mathrm{Ta}_{6} \mathrm{~S}$ is 2.49 (2) which is slightly closer to the sum of the Slater (1964) radii $(2.45 \AA)$ than is the

Table 2. Observed and calculated structure factors $(\times 0 \cdot 10)$ for $\mathrm{Ta}_{6} \mathrm{~S}$

 が~

 건N

 i~~~~~~~ocoo

 \therefore :

Table 3. Interatomic distances

Reference atom	Neighbor	Distance*
$\mathrm{Ta}(1)$	$\mathrm{Ta}(1)$	2.644
	$\mathrm{Ta}(1)$	$2 \cdot 644$
	Ta (5)	2.795
	$\mathrm{Ta}(5)$	2.828
	$\mathrm{Ta}(3)$	2.873
	$\mathrm{Ta}(3)$	2.890
	Ta (6)	2.953
	$\mathrm{Ta}(2)$	$2 \cdot 964$
	Ta (6)	2.979
	$\mathrm{Ta}(4)$	3.001
	$\mathrm{Ta}(4)$	3.004
	$\mathrm{Ta}(2)$	3.008
$\mathrm{Ta}(2)$	S(1)	2.525
	$\mathrm{Ta}(1)$	2.964
	$\mathrm{Ta}(6)$	$2 \cdot 966$
	$\mathrm{Ta}(1)$	3.008
	$\mathrm{Ta}(3)$	3.010
	$\mathrm{Ta}(5)$	3.055
	$\mathrm{Ta}(5)$	3.071
	$\mathrm{Ta}(4)$	$3 \cdot 138$
	$\mathrm{Ta}(5)$	$3 \cdot 140$
	$\mathrm{Ta}(3)$	3.188
	Ta (6)	3.208
	$\mathrm{Ta}(3)$	$3 \cdot 237$
Ta(3)	S(1)	2.448
	S(1)	2.529
	$\mathrm{Ta}(1)$	2.873
	$\mathrm{Ta}(1)$	2.890
	$\mathrm{Ta}(4)$	2.911
	$\mathrm{Ta}(2)$	3.010
	Ta(6)	3.055
	$\mathrm{Ta}(3)$	3.055
	$\mathrm{Ta}(4)$	3.069
	$\mathrm{Ta}(5)$	$3 \cdot 138$
	$\mathrm{Ta}(2)$	$3 \cdot 188$
	Ta(6)	$3 \cdot 227$
	Ta(2)	3.237
$\mathrm{Ta}(4)$	$\mathrm{S}(1)$	2.503
	$\mathrm{Ta}(4)$	2.869
	$\mathrm{Ta}(3)$	2.911
	$\mathrm{Ta}(1)$	3.001
	$\mathrm{Ta}(1)$	3.004
	$\mathrm{Ta}(5)$	3.058
	$\mathrm{Ta}(3)$	3.069
	Ta (6)	3.094
	$\mathrm{Ta}(2)$	$3 \cdot 138$
	$\mathrm{Ta}(5)$	$3 \cdot 143$
	Ta (6)	$3 \cdot 222$
	$\mathrm{Ta}_{\mathbf{S}(1)}$	$3 \cdot 387$
$\mathrm{Ta}(5)$	S(1)	2.485
	S(1)	2.489
	$\mathrm{Ta}(1)$	2.795
	$\mathrm{Ta}(1)$	2.828
	$\mathrm{Ta}(6)$	2.839
	$\mathrm{Ta}(5)$	2.921
	$\mathrm{Ta}(2)$	3.055
	$\mathrm{Ta}(4)$	3.058
	$\mathrm{Ta}(2)$	3.071
	$\mathrm{Ta}(3)$	$3 \cdot 138$
	Ta(2)	$3 \cdot 140$
	$\mathrm{Ta}(6)$	$3 \cdot 140$
	Ta(4)	3.143
Ta (6)	S(1)	2.465
	$\mathrm{Ta}(6)$	2.722
	$\mathrm{Ta}(5)$	2.839
	$\mathrm{Ta}(1)$	2.953
	$\mathrm{Ta}(2)$	2.966
	$\mathrm{Ta}(1)$	2.979
	$\mathrm{Ta}(3)$	3.055
	$\mathrm{Ta}(4)$	3.094

Table 3 (cont.)

Reference atom	Neighbor	Distance*
	$\mathrm{Ta}(5)$	3.140
	$\mathrm{Ta}(2)$	3.208
	$\mathrm{Ta}(4)$	3.222
	$\mathrm{Ta}(3)$	3.227
$\mathrm{~S}(1)$	$\mathrm{Ta}(4)$	3.387
	$\mathrm{Ta}(3)$	2.448
	$\mathrm{Ta}(6)$	2.465
	$\mathrm{Ta}(5)$	2.485
	$\mathrm{Ta}(5)$	2.489
	$\mathrm{Ta}(4)$	2.503
	$\mathrm{Ta}(2)$	2.525
	$\mathrm{Ta}(3)$	2.529

* The average estimated standard deviation in Ta-Ta distances is $0.005 \AA$; the average estimated standard deviation in the $\mathrm{Ta}-\mathrm{S}$ distance is $0.020 \AA$.
average $\mathrm{Ta}-\mathrm{S}$ distance in $\mathrm{Ta}_{2} \mathrm{~S}(2.53 \AA)$. The distance between sulfur atoms is $3.93 \AA$ in $\mathrm{Ta}_{6} \mathrm{~S}$ while in $\mathrm{Ta}_{2} \mathrm{~S}$ the shortest distance between sulfur atoms is $2 \cdot 86 \AA$.

The arrangement of metal atoms in $\mathrm{Ta}_{6} \mathrm{~S}$ is quite similar to that in $\mathrm{Ta}_{2} \mathrm{~S}$; all the metal atoms in both structures are contained in chains of pentagonal antiprisms. The coordination of sulfur is totally different in the two phases; in $\mathrm{Ta}_{2} \mathrm{~S}$ the arrangement of chains of metal clusters and the bridging sulfur atoms results in large holes in the structure while the structure of $\mathrm{Ta}_{6} \mathrm{~S}$ lacks this feature. The $\mathrm{Ta}_{6} \mathrm{~S}$ structure is more closely packed than the $\mathrm{Ta}_{2} \mathrm{~S}$ structure, as can be seen by a comparison of the void regions [33.9\% in $\mathrm{Ta}_{6} \mathrm{~S}$, 42.9% in $\mathrm{Ta}_{2} \mathrm{~S}$, using the Slater (1964) radii] and by the shortest inter-cluster tantalum-tantalum distance in both structures $\left(2.72 \AA\right.$ in $\mathrm{Ta}_{6} \mathrm{~S}$, compared with $3.05 \AA$ in $\mathrm{Ta}_{2} \mathrm{~S}$).

The less closely packed $\mathrm{Ta}_{2} \mathrm{~S}$ structure exhibits a relatively unusual channel region devoid of atomic centers. The existence of channels in the $\mathrm{Ta}_{2} \mathrm{~S}$ structure might be due to the presence of electrons in nonbonding orbitals in these regions of the $\mathrm{Ta}_{2} \mathrm{~S}$ structure. In $\mathrm{Ta}_{6} \mathrm{~S}$, however, the sulfur is bonded to a greater degree, and hence no region containing non-bonded electrons exists. This apparently greater involvement of sulfur orbitals in the bonding is consistent with a classification recently proposed by Conard, Norrby \& Franzen (1969). Structures in class II of this classification have a chalcogen-to-metal ratio less than 0.50 and relatively high chalccogen coordination numbers (≥ 6), whereas structures in class III have a chalcogen-tometal ratio equal to 0.50 and regions in the structure in which non-bonded chalcogen arrangements occur. The structure of $\mathrm{Ta}_{2} \mathrm{~S}$ belongs to class III of this classification.

From considerations based strictly on the stoichiometry of $\mathrm{Ta}_{6} \mathrm{~S}$ it would be predicted that the structure belongs to class II, and this is what is found. Consistently one finds chalcogen coordination and high calculated chalcogen valences in the more metal-rich compounds such as $V_{3} S$ (Pederson \& Grønvold, 1959), $\mathrm{Nb}_{21} \mathrm{~S}_{8}$ (Franzen, Beineke \& Conard, 1968), and $\mathrm{Ta}_{6} \mathrm{~S}$ suggesting that the increased availability of metallic or-
bitals, as compared with the availability in $\mathrm{Nb}_{2} \mathrm{Se}$ (Conard, Norrby \& Franzen, 1969) and $\mathrm{Ta}_{2} \mathrm{~S}$, results in greater involvement of the chalcogen orbitals in bonding in class II compounds.

The coordination of the sulfur atom in $\mathrm{Ta}_{6} \mathrm{~S}$ can be described as a distorted capped trigonal prism, a very common coordination of sulfur in metal-rich sulfides. Six of the Ta atoms can be described as forming a slightly distorted trigonal prism with an average Ta-S distance of 2.48 (6) \AA; the seventh Ta atom, $\mathrm{Ta}(2)$, is off one of the rectangular faces at a distance of $2.53 \AA$.
In summary, the $\mathrm{Ta}_{6} \mathrm{~S}$ structure exhibits linear metal clusters similar to those found in $\mathrm{Ta}_{2} \mathrm{~S}$ and sulfur coordination similar to that found, for example, in $V_{3} \mathrm{~S}$. The absence of significant holes in the structure puts it in a class with $\mathrm{V}_{3} \mathrm{~S}$ and $\mathrm{Nb}_{21} \mathrm{~S}_{8}$, a class to which it also belongs by virtue of containing a group VB metal, by virtue of the sulfur coordination, and by virtue of being more metal rich than $\mathrm{Ta}_{2} \mathrm{~S}$. It is suggested that this class of structures differs from the class containing $\mathrm{Ta}_{2} \mathrm{~S}$ and $\mathrm{Nb}_{2} \mathrm{Se}$ primarily in the difference in chalcogen valence, and that the crystallographic holes in $\mathrm{Ta}_{2} \mathrm{~S}$ and $\mathrm{Nb}_{2} \mathrm{Se}$ are, in fact, not 'holes' at all, but are rather regions containing electrons in nonbonding orbitals.

The authors express their appreciation to J. Benson for his assistance in obtaining data from the automated
diffractometer and to H . Baker for taking photographs of the single crystal.

References

Busing, W. R. \& Levy, H. A. (1957). Acta Cryst. 10, 180.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). Oak Ridge National Laboratory Report ORNL-TM-305.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1964). Oak Ridge National Laboratory Report ORNL-TM-306.
Conard, B. R., Norrby, L. J. \& Franzen, H. F. (1969). Acta Cryst. B25, 1729.
Dahm, D. J., Benson, J. E., Nimrod, D. M., Fitzwater, D. R. \& Jacobson, R. A. (1967). USAEC Report IS-1701. Franzen, H. F., Beineke, T. A. \& Conard, B. R. (1968). Acta Cryst. B24, 412.
Franzen, H. F. \& Smeggil, J. G. (1969). Acta Cryst. B25, 1736.

Hambling, P. G. (1953). Acta Cryst. 6, 98.
Hansen, H. P., Herman, F., Lea, J. D. \& Skillman, S. (1964). Acta Cryst. 17, 1040.

International Tables for X-ray Crystallography (1962). Vol. III, p.216. Birmingham: Kynoch Press.
Johnson, C. K. (1965). Oak Ridge National Laboratory Report ORNL-3794.
Owens, J. P., Conard, B. R. \& Franzen, H. F. (1967). Acta Cryst. 23, 77.
Pedersen, B. \& Grønvold, F. (1959). Acta Cryst. 12, 1022.
Slater, J. C. (1964). J. Chem. Phys. 41, 3199.
Woolfson, M. M. (1961). Direct Methods in Crystallography. Oxford: Clarendon Press.

Acta Cryst. (1970). B26, 129

Neutron Diffraction Study of α-Uranium at Low Temperatures*

By G.H.Lander and M. H. Mueller
Metallurgy Division, Argonne National Laboratory Argonne, Illinois 60439, U.S.A.

(Received 30 January 1969)

Abstract

Neutron diffraction measurements have been made on two single crystals of α-uranium in the temperature range $10^{\circ} \mathrm{K}$ to room temperature. The previously reported variations in the y-positional parameter of the uranium atom are confirmed. There is no deviation from the orthorhombic structure nor any magnetic ordering at low temperature. At low temperature, the increases in the strong nuclear intensities, which are as great as 45% in some cases, are due to a change in the extinction parameter. This effect, observed at various neutron wavelengths, is related to the size of the perfect domains in the crystal and is reversible.

Introduction

Previous diffraction studies on α-uranium near helium temperatures have been confined to zone scans, primarily aimed at studying changes in the unit-cell di-

[^1]mensions and y-positional parameter of the uranium atom. These properties were comprehensively examined by Barrett, Mueller \& Hitterman (1963) who also reported additional reflections at low temperatures that were possible indications of magnetic ordering. Subsequent susceptibility measurements by Ross \& Lam (1968) showed that no simple magnetic ordering exists in α-uranium, although their experiments do not

[^0]: * This work was performed in the Ames Laboratory of the U.S. Atomic Energy Commission. Contribution No. 2487.

[^1]: * Work performed under the auspices of the U.S. Atomic Energy Commission.

